ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если стороны a, b и противолежащие им углы α и β треугольника связаны соотношением a/cos α = b/cos β, то треугольник – равнобедренный. Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе? Постройте четырехугольник по углам и диагоналям.
Число Y получается из натурального числа X некоторой перестановкой его цифр. Известно, что X + Y = 10200. Доказать, что X делится на 50. а) Покажите, что среди любых шести целых чисел найдутся два, разность которых
кратна 5.
Исследуйте последовательности на сходимость:
a, b и c - длины сторон произвольного треугольника. Докажите, что Докажите, что если в выражении (x² – x + 1)2014 раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным. |
Задача 64955
УсловиеДокажите, что если в выражении (x² – x + 1)2014 раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным. Решение 1Найдём коэффициент при х в полученном многочлене. Подобные слагаемые с буквенной частью x образуются при перемножении 2014 одинаковых скобок следующим образом: в одной из скобок берется слагаемое – x, а в остальных скобках – слагаемое 1. Следовательно, коэффициент при х будет равен –2014. Решение 2Сумма коэффициентов полученного многочлена равна его значению при x = 1, то есть (1 – 1 + 1)2014 = 1. Но в этом многочлене коэффициент при x4028 и свободный член равны 1. Следовательно, должен быть хотя бы один отрицательный коэффициент. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке