Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD = 3:2 . Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB , если AB:CD = 3:2 .

Вниз   Решение


Касательная и секущая, проведённые из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, а внутренняя часть секущей равна 10. Найдите радиус окружности.

ВверхВниз   Решение


Докажите, что если  a + b + c = 0,  то   2(a5 + b5 + c5) = 5abc(a2 + b2 + c2).

ВверхВниз   Решение


Точка D лежит на стороне AB треугольника ABC, точки E и F — на стороне BC этого треугольника, а точка P — на стороне AC. Отрезок AD составляет две трети стороны AB, отрезок BF составляет три пятых стороны BC, отрезок BE составляет одну пятую стороны BC, а точка P делит сторону AC пополам. Найдите отношение площади четырёхугольника DEFP к площади треугольника ABC.

ВверхВниз   Решение


С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны.

ВверхВниз   Решение


Окружность касается двух параллельных прямых и их секущей. Отрезок секущей, заключённый между параллельными прямыми делится точкой касания в отношении  1 : 3.  Под каким углом секущая пересекает каждую из параллельных прямых?

ВверхВниз   Решение


Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.

ВверхВниз   Решение


а) Существует ли треугольник, в котором наименьшая медиана длиннее наибольшей биссектрисы?

б) Существует ли треугольник, в котором наименьшая биссектриса длиннее наибольшей высоты?

Вверх   Решение

Задача 65043
Темы:    [ Длины сторон, высот, медиан и биссектрис ]
[ Неравенства для элементов треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

а) Существует ли треугольник, в котором наименьшая медиана длиннее наибольшей биссектрисы?

б) Существует ли треугольник, в котором наименьшая биссектриса длиннее наибольшей высоты?


Решение

  Пусть в треугольнике ABC длины сторон BC, AC, AB равны a, b, c соответственно, причём  a ≤ b ≤ c, а AH – высота.   а) Пусть CM – медиана, AL – биссектриса. Если угол C тупой или прямой, то  AL > AC.  Так как  BCAC,  то угол CMA – тупой или прямой, поэтому  CM ≤ AC  и, значит,
CM < AL.

  Пусть теперь угол C острый. Так как сторона AB наибольшая, то  ∠C ≥ 60°.  Тогда    В то же время
CM² = ¼ (2a² + 2b² – c²) ≤ ¼ (2a² + b²) ≤ ¾ b² ≤ AL².

  б) Пусть l – длина биссектрисы угла C,  h = AH. Тогда  (al + bl) sin C/2 = 2SABC = ab sin C,  то есть    .   С другой стороны,  h = b sin C  и     (так как  a + b ≥ 2a,  а  ∠C ≥ 60°).


Ответ

Не существует (в обоих случаях).

Замечания

Нетрудно построить треугольник, в котором наименьшая медиана длиннее наибольшей высоты.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2011
тур
задача
Номер 17

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .