ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Квадратный трёхчлен f(x) = ax² + bx + c таков, что уравнение f(x) = x не имеет вещественных корней. Подряд выписаны n чисел, среди которых есть положительные и отрицательные. Подчеркивается каждое положительное число, а также каждое число, сумма которого с несколькими непосредственно следующими за ним числами положительна. Докажите, что сумма всех подчеркнутых чисел положительна. Докажите, что если в треугольной пирамиде любые два трехгранных угла равны или симметричны, то все грани этой пирамиды равны. Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что DE || AC. Точки P и Q на меньшей дуге AC окружности ω таковы, что DP || EQ. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что ∠XBY + ∠PBQ = 180°. В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой. Пусть
A1, B1,..., F1 — середины сторон
AB, BC,..., FA произвольного шестиугольника. Докажите, что точки
пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
Дана равнобокая трапеция ABCD (AB=CD). На описанной около неё окружности выбирается точка P так, что отрезок CP пересекает основание AD в точке Q. Пусть L – середина QD. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой PL. На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях: а) N = 3; б) N = 4. |
Задача 65738
УсловиеНа сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях: а) N = 3; б) N = 4. Решение Оценка. Возьмём любые две дороги – большие окружности на сфере. Они пересекаются в некоторой точке-узле. Мысленно повернём одну из этих дорог относительно диаметра, содержащего узел, чтобы совпали дороги и направления движения на них. Если в этом эксперименте поезда-дуги пересекутся, то через некоторое время они на самом деле пересекутся в узле, что запрещено. Поэтому сумма длин поездов на этих дорогах не больше 1.
Пусть a1, ..., an – суммы длин поездов на n дорогах. Складывая все неравенства вида ai + aj ≤ 1, где 1 ≤ i < j ≤ n, получим Пример. Первый способ. (Кубоктаэдр получается из куба соединением середин всех соседних рёбер. Таким образом, проекции дорог – это правильные шестиугольники – сечения бывшего куба.) Второй способ. б) Рассмотрим правильную четырёхугольную призму, вписанную в данную сферу. Каждая дорога – сечение сферы плоскостью, проходящей через одно из ребер основания и противоположное ребро другого основания призмы. На каждой дороге разместим по одному поезду длины ½. На рисунке изображены "проекции" дорог и поездов на поверхность призмы (каждой дороге соответствует свой цвет). Ответа) 1,5; б) 2. Замечания1. Как в первом способе из икосаэдра (или додекаэдра) можно вырезать икосододекаэдр (см. рис.) и так же расставить поезда, получив пример с шестью дорогами. 2. На самом деле можно добиться сколь угодно большой суммарной длины поездов, если разрешается использовать сколь угодно большое число дорог. 3. Баллы – 4 + 6. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке