Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

Вниз   Решение


На одной прямой взяты точки A1, B1 и C1, а на другой — точки A2, B2 и C2. Прямые A1B2 и A2B1B1C2 и B2C1C1A2 и C2A1 пересекаются в точках C, A и B соответственно. Докажите, что точки A, B и C лежат на одной прямой (Папп).

ВверхВниз   Решение


На сторонах AB, BC и CD четырехугольника ABCD (или на их продолжениях) взяты точки K, L и M. Прямые KL и AC пересекаются в точке PLM и BD — в точке Q. Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.

ВверхВниз   Решение


Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки.

ВверхВниз   Решение


Докажите, что среди любых 10 целых чисел найдётся несколько, сумма которых делится на 10.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O.

ВверхВниз   Решение


а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.

ВверхВниз   Решение


Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10.
Найдите математическое ожидание числа моментов, когда наступала ничья.

Вверх   Решение

Задача 65780
Темы:    [ Дискретное распределение ]
[ Средние величины ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10.
Найдите математическое ожидание числа моментов, когда наступала ничья.


Решение

  Если 2n – максимальный суммарный счёт, то игру можно рассматривать как случайное блуждание длины 2n: на каждом шаге разрыв в счете либо увеличивается на единицу, либо уменьшается на единицу.
  Пусть I2kиндикатор ничьей на 2k-м шаге:  
  Случайная величина X "число моментов, когда наступала ничья" равна сумме всех индикаторов. Начало игры не будем считать "наступлением ничьей". Следовательно,  X = I2 + I4 + ... + I2n,  а  
  При  n = 5  получаем  EX = 2/4 + 6/16 + 20/64 + 70/256 + 252/2048 ≈ 1,707.

Ответ

≈ 1,707.

Источники и прецеденты использования

олимпиада
Название Заочная олимпиада по теории вероятностей и статистике
год
Дата 2016
тур
задача
Номер 16

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .