Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

В клетках квадратной таблицы n × n, где n > 1, требуется расставить различные целые числа от 1 до n2 так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на n, – в разных строках и в разных столбцах. При каких n это возможно?

Вниз   Решение


По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.

ВверхВниз   Решение


Автор: Нилов Ф.

Дан треугольник ABC,  O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём
l || XO.  Докажите, что прямая L образует равные углы с прямыми AB и CD.

ВверхВниз   Решение


Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Докажите, что в этом многоугольнике найдутся две равные стороны.

ВверхВниз   Решение


На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.

ВверхВниз   Решение


Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?

ВверхВниз   Решение


Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что  AP = BQ.

ВверхВниз   Решение


Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности.
Сколько может оказаться точек, хороших для данного треугольника ABC?

ВверхВниз   Решение


В треугольнике ABC прямая m касается вписанной окружности ω. Прямые, проходящие через центр I окружности ω и перпендикулярные AI, BI, CI, пересекают прямую m в точках A', B', C' соответственно. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.

ВверхВниз   Решение


В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.

Вверх   Решение

Задача 66807
Тема:    [ Радикальная ось ]
Сложность: 5
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.

Решение

Зафиксируем точки $A_1,\ldots, A_5$ и будем двигать $A_6$ по прямой, проходящей через $A_3$ и точку пересечения диагоналей четырехугольника $A_1A_2A_4A_5$. Заметим, что центр $O$ окружности $A_1A_2A_5$ при этом фиксирован, а центр $O'$ окружности $A_1A_3A_6$ движется по серединному перпендикуляру к отрезку $A_1A_3$, причем соответствие между $A_6$ и $O'$ проективно (так как $\angle O'A_1A_6=\frac{\pi}{2}-\angle A_6A_3A_1=\operatorname{const}$). Поскольку радикальная ось $l_1$ перпендикулярна прямой $OO'$, соответствие между $A_6$ и $l_1$ также проективно, значит, проективно и соответствие между вращающимися вокруг точек $A_1$ и $A_2$ прямыми $l_1$ и $l_2$. Следовательно, точка пересечения этих прямых будет двигаться по некоторой конике. Поскольку обе прямые совпадают с $A_1A_2$, когда $A_6$ попадает на окружность $A_1A_2A_3$, эта коника распадается на $A_1A_2$ и еще одну прямую, которая, очевидно, проходит через $A_3$. Кроме того, когда $A_6$ попадает на окружность $A_2A_3A_5$, точка пересечения лежит на $l_3$, следовательно, она лежит на $l_3$ и при остальных положениях $A_6$. Таким образом, $l_1$, $l_2$ и $l_3$ пересекаются в одной точке. Аналогично получаем, что три оставшихся радикальных оси проходят через ту же точку.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2019
класс
Класс 9
задача
Номер 9.8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .