ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри параллелограмма $ABCD$ взята такая точка $P$, что ∠$PDA$ = ∠$PBA$. Пусть Ω – вневписанная окружность треугольника $PAB$, лежащая против вершины $A$, а ω – вписанная окружность треугольника $PCD$. Докажите, что одна из общих касательных к Ω и ω параллельна $AD$. Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7? В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N. При каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что |$a - b$| ≤ $k$ или |1/a – 1/b| ≤ $k$? |
Задача 67058
УсловиеПри каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что |$a - b$| ≤ $k$ или |1/a – 1/b| ≤ $k$? РешениеДокажем, что для любых трёх ненулевых чисел $a < b < c$ одна из шести разностей $b$ – $a$, $c$ – $b$, $c$ – $a$, $|\frac{1}{a}$ – $\frac{1}{b}|$, $|\frac{1}{b}$ – $\frac{1}{c}|$, $|\frac{1}{a}$ – $\frac{1}{c}|$ не превосходит 1,5. Не умаляя общности, хотя бы два числа положительны. Способ 1. Предположим противное. Заменой всех чисел на обратные к ним можно добиться того, чтобы наименьшее число $a$ было не меньше –1. Тогда среднее число $b$ > 0,5, Способ 2. Разберём возможные случаи. ОтветПри $k$ = 1,5. Замечания1. Улучшить результат нельзя: для чисел $-1, \frac{1}{2}, 2$ все шесть разностей не меньше $\frac{3}{2}$. 2. 7 баллов. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке