ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружности ω1 и ω2 касаются внешним образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.
Докажите, что геометрическая прогрессия
{an} = bx0n
удовлетворяет соотношению (11.2
) тогда и только тогда,
когда x0
-- корень характеристического уравнения (11.3
) последовательности
{an}.
На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек Даны выпуклый n-угольник с попарно непараллельными сторонами и точка O внутри его. Докажите, что через точку O нельзя провести
более n прямых, каждая из которых делит площадь n-угольника пополам.
В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон. Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон. На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат. Дано n точек, n > 4. Докажите, что можно соединить их стрелками так, чтобы из каждой точки в любую другую можно было попасть, пройдя либо по одной стрелке, либо по двум (каждые две точки можно соединить стрелкой только в одном направлении; идти по стрелке можно только в указанном на ней направлении). |
Задача 73746
УсловиеДано n точек, n > 4. Докажите, что можно соединить их стрелками так, чтобы из каждой точки в любую другую можно было попасть, пройдя либо по одной стрелке, либо по двум (каждые две точки можно соединить стрелкой только в одном направлении; идти по стрелке можно только в указанном на ней направлении). Решение Индукция по n. База. При n = 5 требуемый граф представлен на рис. слева. Если и X и Y не совпадают с C, то из X в Y можно пройти (не более чем за два «хода») по индукционному предположению. Пусть X или Y совпадает с C. Тогда другая из этих точек (Y или X) входит в какую-то пару из тех, на которые мы разбили первые n точек. Таким образом, X и Y – это какие-то две из трёх точек, изображенных на центральном рисунке. Глядя на этот рисунок, легко перебрать все возможные варианты и убедиться, что требование выполняется. 2) n нечётно. Выберем любую вершину A1. Она соединена стрелками со всеми остальными вершинами: A2, ..., An. Из A1 выходят не менее чем две стрелки или в A1 входят не менее чем две стрелки (так как n > 4). Пусть из A1 выходят не менее чем две стрелки (второй случай аналогичен) – в вершины A2, A3. Остальные вершины разобьем на пары. Теперь соединим стрелками новую вершину с тройкой A1, A2, A3 – как показано на рис. справа, а со всеми парами – как показано на рис. в центре. Как и в случае а), легко доказать, что полученный граф удовлетворяет условию задачи. ЗамечанияПри n = 3 требуемый граф тоже существует (рис. в центре), а при n = 4 такого графа нет (в этом легко убедиться перебором). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке