Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

Вниз   Решение


Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


ВверхВниз   Решение


Дан выпуклый многоугольник и точка O внутри него. Любая прямая, проходящая через точку O, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и O — центр симметрии.

ВверхВниз   Решение


Из последовательности  a,  a + d,  a + 2d,  a + 3d, ...,  являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d  рационально. Докажите это.

ВверхВниз   Решение


На суде в качестве вещественного доказательства предъявлено 14 монет. Эксперт обнаружил, что семь из них — фальшивые, остальные — настоящие, причём узнал, какие именно фальшивые, а какие — настоящие. Суд же знает только, что фальшивые монеты весят одинаково, настоящие монеты весят одинаково, а фальшивые легче настоящих. Эксперт хочет тремя взвешиваниями на чашечных весах без гирь доказать суду, что все обнаруженные им фальшивые монеты действительно фальшивые, а остальные — настоящие. Сможет ли он это сделать?

ВверхВниз   Решение


а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры.

б) Даны натуральные числа k и n, причём  1 < k < n.  Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?

ВверхВниз   Решение


а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

Вверх   Решение

Задача 73767
Темы:    [ Системы точек ]
[ Неравенства с углами ]
[ Метод ГМТ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

Решение

а) Отметим, что для заданных точек A и B точка C , лежащая вне прямой AB и вне полосы, образованной перпендикулярами к прямой AB в точках A и B , образует с точками A и B невырожденный тупоугольный треугольник (см.рис.1). Для каждой пары точек из заданного конечного множества построим полосу и прямую в соответствии с рис.1. Конечное число полос конечной ширины и прямых, очевидно, не покроют всей плоскости, следовательно, существует точка, образующая с каждой парой точек из заданного множества тупоугольный треугольник, что и требовалось доказать.

б) Ответ: вообще говоря, не справедливо.

Приведем следующий пример. Рассмотрим множество, состоящее из точек полуокружности без одного конца диаметра (рис.2). Легко видеть, что такое множество удовлетворяет условиям задачи. Докажем что к нему нельзя добавить уже ни одной точки (это почти очевидно). В самом деле, если точка лежит внутри полуокружности на ее диаметре (рис.3, точка X ), то всегда можно найти такую точку C на полуокружности, что треугольник ACX будет остроугольным. То же самое имеет место для всех точек, лежащих вне полуокружности или внутри, но вне ее диаметра (рис.4, точки X' и X'' ; соответствующие точки B' , C' и B'' , C'' выбираются "достаточно близкими"). Если же точка выбирается на диаметре вне полуокружности (рис.5, точка M ), то имеет место вырождение– на рис.5 точки M , N , K оказываются на одной прямой.


Ответ

б) вообще говоря, не справедливо.

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1973
выпуск
Номер 11
Задача
Номер М232

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .