Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

При каких $n$ можно замостить плоскость равными фигурами, ограниченными $n$ дугами окружностей?

Вниз   Решение


Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, ..., a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) – a2 камней, ..., наконец, в оставшуюся коробку – a2017 камней. Пашина цель – добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя – за меньшее ненулевое число ходов?

ВверхВниз   Решение


В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

ВверхВниз   Решение


Бесконечная последовательность чисел xn определяется условиями:  xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
  б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?

ВверхВниз   Решение


Автор: Фомин С.В.

В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?

ВверхВниз   Решение


Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?

ВверхВниз   Решение


На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете?

ВверхВниз   Решение


Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

Вверх   Решение

Задача 74569
Темы:    [ Симметричная стратегия ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 7,8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

Решение

Автор: С.В. Фомин, Н. Б. Васильев

В обоих вариантах игры побеждает начинающий. Это справедливо и для любой шоколадки из mn долек (размером m×n), где mn четно (за исключением случая шоколадки 2×n с нечетным n в варианте б) — здесь ответ зависит от mn.)

Мы рассмотрим сразу общий случай. Интересно, что выигрышные стратегии в "противоположных"; вариантах а) и б) почти совпадают.

а) Стратегия, обеспечивающая выигрыш начинающему, такова. Хотя бы одно из чисел m и n четно – пусть это будет m (m=2k). Первым ходом начинающий разламывает шоколадку на две одинаковые половины (по n×k долек). Затем каждый ход второго он дублирует на другой половине шоколадки. Таким образом, после каждого хода первого игрока обе половины будут разломаны совершенно одинаковым образом. Ясно, что при этом первый не отломит дольку 1×1 раньше, чем это сделает второй.

б) Здесь при четном m>2 и n>1 начинающий может использовать ту же "симметричную" стратегию до тех пор, пока второй не отломит полоску шириной 1; первый тут же отламывает он нее дольку 1×1 и выигрывает.
В варианте б) игры "симметричная" стратегия для шоколадки 2×n не годится – отламывать полоску шириной 1 нельзя (это немедленно ведет к проигрышу), так что шоколадку можно ломать только "поперек". Возникает совсем другая задача, более сложная задача, подробное исследование которой предоставляется читателю.

Ответ для нечетного mn в общем случае нам неизвестен ни для варианта а), ни для варианта б) игры.

Ответ 1

Ответ В обоих вариантах игры побеждает начинающий.

Ответ 2

В обоих вариантах игры побеждает начинающий.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 8
Название Игры
Тема Теория игр
задача
Номер 020
журнал
Название "Квант"
год
Год 1987
выпуск
Номер 3
Задача
Номер М1034

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .