Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?

Вниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a
(a < R + r).

ВверхВниз   Решение


Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

ВверхВниз   Решение


Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?

ВверхВниз   Решение


Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

ВверхВниз   Решение


В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный.

ВверхВниз   Решение


К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.

ВверхВниз   Решение


Решить в целых числах уравнение  x + y = x² – xy + y².

Вверх   Решение

Задача 76498
Темы:    [ Уравнения в целых числах ]
[ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
Сложность: 3
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Решить в целых числах уравнение  x + y = x² – xy + y².


Решение 1

Рассмотрим данное уравнение как квадратное уравнение относительно x:  x² – (y + 1)x + y² – y = 0.  Дискриминант этого уравнения равен
– 3y² + 6y + 1.  Он отрицателен при  y ≥ 3  и при  y ≤ –1.  Поэтому для y получаем три возможных значения: 0, 1, 2. Для каждого из этих значений получаем уравнение, которое легко решается.


Решение 2

  Правая часть неотрицательна, поэтому  x + y ≥ 0.
  Запишем уравнение в виде  (x + y)² – (x + y) = 3xy.  Согласно неравенству Коши  xy ≤ ¼ (x + y)²,  откуда  ½ (x + y)² ≤ x + y,  то есть  x + y ≤ 4.  Подставляя  x + y = 0, 1, 2, 3, 4,  получим, что соответственно  xy = 0, 0, ⅔, 2, 4.  Теперь решения легко находятся.


Ответ

(0, 0),  {0, 1},  {1, 2},  (2, 2).

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 7
Год 1941
вариант
Класс 9,10
Тур 2
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .