Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?

Вниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a
(a < R + r).

ВверхВниз   Решение


Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

ВверхВниз   Решение


Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?

ВверхВниз   Решение


Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

ВверхВниз   Решение


В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный.

ВверхВниз   Решение


К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.

Вверх   Решение

Задача 76505
Тема:    [ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.

Решение

Пусть O — точка касания окружностей, A и D — точки касания с окружностями одной касательной, B и C — точки касания другой касательной (точки A и B лежат на одной окружности, C и D на другой). Проведём через точку O общую касательную к окружностям. Пусть она пересекает прямые BC и AD в точках P и Q. Две касательные, проведённые из одной точки к окружности, равны, поэтому PB = PO = PC и QA = QO = QD. Из этого следует, что: 1) отрезок PQ является средней линией трапеции ABCD; 2) длина отрезка PQ равна полусумме длин сторон BC и AD. Остаётся заметить, что длина средней линии трапеции ABCD равна полусумме длин её оснований AB и CD.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 8
Год 1945
вариант
Класс 7,8
Тур 1
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .