ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он? Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке. Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену. Доказать, что при нечётном n > 1 уравнение xn + yn = zn не может иметь решений в целых числах, для которых x + y – простое число. Учительница математики предложила изменить схему голосования на конкурсе спектаклей (см. задачу 65299). По её мнению, нужно из всех 2n мам выбрать случайным образом жюри из 2m человек (2m ≤ n). Найдите вероятность того, что лучший спектакль победит при таких условиях голосования. В выпуклом четырёхугольнике ABCD ∠ABC = 90°,
∠BAC = ∠CAD, AC = AD, DH – высота
треугольника ACD. Доказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2. |
Задача 78136
УсловиеДоказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2. Решение Если уравнение с целыми коэффициентами x² + px + q = 0 имеет нецелый корень x1, то этот корень иррациональный (см. задачу 61013). Первый способ. Общий корень наших уравнений имеет вид Второй способ. Общий корень данных уравнений является корнем уравнения (p1 – p2)x + (q1 – q2) = 0, то есть при p1 ≠ p2 является рациональным числом. Если же p1 = p2, q1 ≠ q2, то последнее уравнение вообще корней не имеет. В обоих случаях приходим к противоречию. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке