Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Двузначное число в сумме с числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти все такие числа.

Вниз   Решение


При дворе короля Артура собрались 2n рыцарей, причём каждый из них имеет среди присутствующих не более  n – 1  врага.
Доказать, что Мерлин, советник Артура, может так рассадить рыцарей за круглым столом, что ни один из них не будет сидеть рядом со своим врагом.

ВверхВниз   Решение


Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна?

ВверхВниз   Решение


На кафтане площадью 1 размещены 5 заплат, площадь каждой из которых не меньше 1/2. Докажите, что найдутся две заплаты, площадь общей части которых не меньше 1/5.

ВверхВниз   Решение


Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.

Вверх   Решение

Задача 78542
Темы:    [ Центр масс ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.

Решение

Поместим в данные точки единичные массы. Пусть O - центр масс полученной системы точек. При любом движении, переводящем систему точек в себя, точка O остается на месте. Поэтому для любых двух точек A и B из нашей системы OA=OB . Значит, все точки лежат на одной окружности с центром в точке O .

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 27
Год 1964
вариант
1
Класс 10
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .