Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Вниз   Решение


n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

ВверхВниз   Решение


Для чисел а, b и с выполняется равенство  .  Следует ли из него, что  ?

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Известен радиус описанной окружности R.
а) Найдите  AP2 + BP2 + CP2 + DP2.
б) Найдите сумму квадратов сторон четырехугольника ABCD.

ВверхВниз   Решение


Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

ВверхВниз   Решение


Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника?

ВверхВниз   Решение


Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.

Вверх   Решение

Задача 79269
Темы:    [ Площадь. Одна фигура лежит внутри другой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.

Решение

Предположим, что в круг радиуса 1 помещены два треугольника, площадь которых больше 1. Достаточно доказать, что оба треугольника содержат центр O круга. Докажем, что если треугольник ABC, помещённый в круг радиуса 1, не содержит центра круга, то его площадь меньше 1. В самом деле, для любой точки, лежащей вне треугольника, найдётся прямая, проходящая через две вершины и отделяющая эту точку от третьей вершины. Пусть для определённости прямая AB разделяет точки C и O. Тогда hc < 1 и AB < 2, поэтому S = hc . AB/2 < 1.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 37
Год 1974
вариант
Класс 9
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .