Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Вниз   Решение



Основания трапеции равны 8 и 2. Углы, прилежащие к большему основанию, равны по 45o. Найдите объем тела, образованного вращением трапеции вокруг большего основания.

ВверхВниз   Решение


Проанализируйте при помощи ним-сумм игру ``Йога'' из задачи 4.21.

ВверхВниз   Решение


Найдите остаток от деления 31989 на 7.

ВверхВниз   Решение


Биссектрисы AA1 и CC1 треугольника ABC пересекаются в точке I. Описанные окружности треугольников AIC1 и CIA1 повторно пересекают дуги AC и BC (не содержащие точек B и A соответственно) описанной окружности треугольника ABC в точках C2 и A2 соответственно. Докажите, что прямые A1A2 и C1C2 пересекаются на описанной окружности треугольника ABC.

ВверхВниз   Решение


Докажите, что при любых k и l многочлен gk,l(x) является возвратным, то есть  
(Определение многочленов Гаусса см. здесь.)

ВверхВниз   Решение


В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.

Вверх   Решение

Задача 79336
Темы:    [ Выпуклые многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.

Решение

По условию вершины k-угольника разбиты на пары {Ai, Aj} так, что точка O принадлежит каждому из отрезков AiAj. Более того, для любой другой пары {Ap, Aq} точки Ap и Aq лежат по разные стороны от прямой ApAq. Из этого следует, что по обе стороны от прямой AiAj лежит по $ {\frac{k-2}{2}}$ точек (в частности, k чётно). Таким образом, O — точка пересечения "больших" диагоналей k-угольника, т.е. диагоналей AiAi + $\scriptstyle {\frac{k}{2}}$.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 40
Год 1977
вариант
Класс 8
Тур 2
задача
Номер 1
олимпиада
Название Московская математическая олимпиада
год
Номер 40
Год 1977
вариант
Класс 7
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .