Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Для любых чисел a1 и a2, удовлетворяющих условиям  a1 ≥ 0,  a2 ≥ 0,  a1 + a2 = 1,  можно найти такие числа b1 и b2, что  b1 ≥ 0,  b2 ≥ 0,  b1 + b2 = 1,
(5/4a1)b1 + 3(5/4a2)b2 > 1.  Доказать.

Вниз   Решение


Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

ВверхВниз   Решение


Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

ВверхВниз   Решение


На каждом борту лодки должно сидеть по четыре человека. Сколькими способами можно выбрать команду для этой лодки, если есть 31 кандидат, причём десять человек хотят сидеть на левом борту лодки, двенадцать – на правом, а девяти безразлично где сидеть?

ВверхВниз   Решение


На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?

Вверх   Решение

Задача 79500
Темы:    [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 11
Из корзины
Прислать комментарий

Условие

На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?

Решение

См. решение задачи 79495.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 49
Год 1986
вариант
Класс 10
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .