Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

Вниз   Решение


а) На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, отличные от вершин треугольника. Докажите, что описанные окружности треугольников  AB1C1, A1BC1 и A1B1C пересекаются в одной точке.
б) Точки A1, B1 и C1 перемещаются по прямым BC, CA и AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику. Докажите, что точка пересечения описанных окружностей треугольников  AB1C1, A1BC1 и A1B1C остается при этом неподвижной. (Треугольники предполагаются не только подобными, но и одинаково ориентированными.)

ВверхВниз   Решение


Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.

ВверхВниз   Решение


Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.

ВверхВниз   Решение


На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида
y = anx² + bnx + cn  (n = 1, 2, ..., 100)?

ВверхВниз   Решение


Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны.

Вверх   Решение

Задача 87245
Темы:    [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны.

Решение

Пусть H – точка пересечения высот основания ABC треугольной пирамиды ABCD , DH – высота пирамиды. Тогда прямая AH – ортогональная проекция наклонной DA на плоскость основания. Поскольку H – точка пересечения высот треугольника ABC , прямая AH перпендикулярна BC . Значит, по теореме о трёх перпендикулярах DA BC . Аналогично докажем, что DB AC и DC AB .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7716

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .