Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 20 задач
Версия для печати
Убрать все задачи

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы было четыре телефона, каждый из которых соединен с тремя другими, восемь телефонов, каждый из которых соединен с шестью, и три телефона, каждый из которых соединен с пятью другими?

Вниз   Решение


Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.

ВверхВниз   Решение


Дана таблица размером 8×8, изображающая шахматную доску. За каждый шаг разрешается поменять местами любые два столбца или любые две строки. Можно ли за несколько шагов сделать так, чтобы верхняя половина таблицы стала белой, а нижняя половина – чёрной?

ВверхВниз   Решение


Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

ВверхВниз   Решение


Гипотенуза прямоугольного треугольника равна 4 м. Найдите радиус описанной окружности.

ВверхВниз   Решение


За круглым столом сидело а) 15; б) 20 человек. Они хотят пересесть так, чтобы те, кто раньше сидел рядом, теперь сидели бы через два человека. Возможно ли это?

ВверхВниз   Решение


Две прямые пересекаются в точке A под углом, не равным 90o ; B и C — проекции точки M на эти прямые. Найдите угол между прямой BC и прямой, проходящей через середины отрезков AM и BC .

ВверхВниз   Решение


Пусть BH – высота прямоугольного треугольника ABC (B=90). Вневписанная окружность треугольника ABH, противолежащая вершине B, касается прямой AB в точке A1; аналогично определяется точка C1. Докажите, что ACA1C1.

ВверхВниз   Решение


На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?

ВверхВниз   Решение


Группа из восьми теннисистов раз в год разыгрывала кубок по олимпийской системе (игроки по жребию делятся на 4 пары; выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию). Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз. Докажите, что
а) каждый побывал в полуфинале более одного раза;
б) каждый побывал в финале.

ВверхВниз   Решение


В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

ВверхВниз   Решение


Боковая сторона треугольника разделена на пять равных частей; через точки деления проведены прямые, параллельные основанию.
Найдите отрезки этих прямых, заключённые между боковыми сторонами, если основание равно 20.

ВверхВниз   Решение


Докажите, что при  x ≥ 0  имеет место неравенство  

ВверхВниз   Решение


В таблице 8×8 одна из клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

ВверхВниз   Решение


Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей?

ВверхВниз   Решение


Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

ВверхВниз   Решение


Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

ВверхВниз   Решение


а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?

ВверхВниз   Решение


В автобусе едут 20 пассажиров, и у каждого много монет по 10, 15 и 20 копеек. Каждый должен заплатить 5 копеек.
Могут ли они сделать это, использовав (в том числе и для обмена между собой)   а) 24 монеты;   б) 25 монет?

ВверхВниз   Решение


Запах от цветущего кустика ландышей распространяется в радиусе 20 м вокруг него. Сколько цветущих кустиков ландышей необходимо посадить вдоль прямолинейной 400-метровой аллеи, чтобы в каждой ее точке пахло ландышем?

Вверх   Решение

Задача 89951
Темы:    [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 5,6,7,8
Название задачи: Ландыши.
Из корзины
Прислать комментарий

Условие

Запах от цветущего кустика ландышей распространяется в радиусе 20 м вокруг него. Сколько цветущих кустиков ландышей необходимо посадить вдоль прямолинейной 400-метровой аллеи, чтобы в каждой ее точке пахло ландышем?

Подсказка

Заметьте, чтобы выполнялись условия задачи, расстояние между соседними ландышами должно быть не больше 40 м.

Решение

Давайте мысленно перенесем крайние левые 20 м аллеи на правый край. Тогда у нас получатся отрезки аллеи по 40 м, а справа от каждого отрезка будет расти ландыш. Таким образом, ландышей должно быть столько же, сколько внутри аллеи поместится отрезков по 40 м. Поскольку таких отрезков разместится 10, то и ландышей надо посадить 10 кустов.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 6
год
Год 2004/2005
занятие
Номер 7
задача
Номер 7.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .