Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?

Вниз   Решение


Число x таково, что число x + $ {\dfrac{1}{x}}$ — целое. Докажите, что при любом натуральном n число xn + $ {\frac{1}{x^n}}$ также является целым.

ВверхВниз   Решение


Найдите длину кратчайшего пути по поверхности единичного правильного тетраэдра между серединами его противоположных рёбер.

ВверхВниз   Решение


Пусть  a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T   an+T = an  (n ≥ 0).  Докажите, что
  а) среди всех периодов этой последовательности существует период наименьшей длины t;
  б) T делится на t.

ВверхВниз   Решение


Автор: Анджанс А.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

Вверх   Решение

Задача 98131
Темы:    [ Взвешивания ]
[ Отношение порядка ]
[ Метод спуска ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Автор: Анджанс А.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?


Решение

См. задачу 98141.

Замечания

10 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1991/1992
Номер 13
вариант
Вариант весенний тур, основной вариант, 8-9 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .