Страница: 1 2 >> [Всего задач: 6]
Задача
98127
(#1)
|
|
Сложность: 3- Классы: 7,8,9
|
n чисел (n > 1) называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на n – 1. Пусть a, b, c, ... – n близких чисел, S – их сумма. Докажите, что
а) все они положительны;
б) a + b > c;
в) a + b > S/n–1.
Задача
98128
(#2)
|
|
Сложность: 4- Классы: 8,9
|
Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как 3 : 4 : 5.
Задача
98129
(#3)
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть m, n и k – натуральные числа, причём m > n. Какое из двух чисел больше:
или
(В каждом выражении k знаков квадратного корня, m и n чередуются.)
Задача
98130
(#4)
|
|
Сложность: 4+ Классы: 8,9
|
Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
(B1C1 || PA, C1A1 || PB, A1B1 || PC). Через точки A1, B1, C1 проведены прямые, параллельные соответственно BC, CA и AB. Докажите, что эти прямые пересекаются в точке, лежащей на описанной окружности треугольника A1B1C1.
Задача
98131
(#5)
|
|
Сложность: 4 Классы: 8,9
|
Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?
Страница: 1 2 >> [Всего задач: 6]