ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разложите функции Сколько целых чисел от 1 до 1997 имеют сумму цифр, делящуюся на 5? Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу
61099)
удовлетворяют начальным условиям Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел? Площадь треугольника ABC равна S. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC.
Стороны треугольника равны a, b, c. Докажите, что медиана,
проведённая к стороне c, равна
Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то AB = BA1). Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики. |
Задача 98250
УсловиеТри кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку
(если A прыгает через B в точку A1, то AB = BA1). Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики. РешениеПусть кузнечики сидят на координатной оси в точках –1, 0, 1. Заметим, что в результате каждого прыжка координата кузнечика остаётся целой. Кроме того, кузнечик при прыжке перемещается всегда на чётное расстояние. Отсюда следует, что если координата кузнечика вначале была чётной, то она и всегда останется чётной. Следовательно, через некоторое время средний кузнечик вернулся на своё начальное место – в точку 0. Замечания3 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке