ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Напечатать все последовательности длины k из
чисел 1..n.
а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578. В предложенном в предыдущей задаче алгоритме используется сравнение двух массивов (x <> last). Устранить его, добавив булевскую переменную l и включив в инвариант соотношение последовательность x - последняя.
Напечатать все последовательности положительных целых чисел
длины k, у которых i-ый член не
превосходит i.
|
Задача 98584
УсловиеДан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной? РешениеПусть это удалось: три прямые, проходящие через точку A, пересекают одну сторону угла в точках B, C, D (C – середина отрезка BD), а другую – в точках B', C', D' (C' – середина B'D'). Пусть прямая, проходящая через B' параллельно BD, пересекает прямые CC' и DD' в точках C'' и D'' соответственно. При гомотетии с центром A, переводящей B в B', точка C перейдёт в C'', а D – в D''. Значит, C'' – середина отрезка B'D'' , т.е. C'C'' – средняя линия треугольника D'B'D''. Поэтому C'C'' || D'D''. Но прямые C'C'' и D'D'' пересекаются в точке A. Противоречие. ОтветНельзя. Замечания5 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке