ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 79237

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 9

Может ли число, состоящее из шестисот шестёрок и некоторого количества нулей, быть квадратом целого числа?

Прислать комментарий     Решение

Задача 79239

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 9

  Рассматриваются решения уравнения  1/x + 1/y = 1/p  (p > 1),  где x, y и p – натуральные числа. Докажите, что если p – простое число, то уравнение имеет ровно три решения; если p – составное, то решений больше трёх  ((a, b)  и  (b, a) – различные решения, если  a ≠ b).

Прислать комментарий     Решение

Задача 79251

Темы:   [ Покрытия ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8

Дан остроугольный треугольник ABC. Его покрывают тремя кругами, центры которых лежат в вершинах, а радиусы равны высотам, проведённым из этих вершин. Доказать, что каждая точка треугольника покрыта хотя бы одним из кругов.
Прислать комментарий     Решение


Задача 79243

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10

Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

Прислать комментарий     Решение

Задача 79244

Темы:   [ Принцип крайнего (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Деревья ]
Сложность: 3+
Классы: 10

В городе N с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую другую.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .