ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 117009

Темы:   [ Текстовые задачи (прочее) ]
[ Деление с остатком ]
Сложность: 3-
Классы: 5,6,7

B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо.
После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо.
Сколько конфет после этого осталось?

Прислать комментарий     Решение

Задача 117010

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3-
Классы: 5,6,7

Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать 7 таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?

Прислать комментарий     Решение

Задача 117000

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Астролог считает, что 2013 год счастливый, потому что 2013 нацело делится на сумму  20 + 13.
Будет ли когда-нибудь два счастливых года подряд?

Прислать комментарий     Решение

Задача 117001

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Автор: Усов С.В.

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления. Валя: "Женя и Саша разного пола. Женя и Саша – мои родители". Саша: "Я – отец Вали. Я – дочь Жени". Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

Прислать комментарий     Решение

Задача 117002

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 5,6,7

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .