ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]      



Задача 64429

Темы:   [ Вписанные и описанные окружности ]
[ Взаимное расположение двух окружностей ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 9,10,11

Дан остроугольный треугольник АВС. Точки B' и C' симметричны его вершинам В и С относительно прямых АС и АВ соответственно. Описанные окружности треугольников АВВ' и ACC', вторично пересекаются в точке Р. Докажите, что прямая АР проходит через центр O описанной окружности треугольника АВС.

Прислать комментарий     Решение

Задача 64483

Темы:   [ Правильный тетраэдр ]
[ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

Прислать комментарий     Решение

Задача 64485

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Сумма восьми чисел равна 4/3. Оказалось, что сумма каждых семи чисел из этих восьми – положительна. Какое наименьшее целое значение может принимать наименьшее из данных чисел?

Прислать комментарий     Решение

Задача 64487

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

В однокруговом турнире участвуют 10 шахматистов. Через какое наименьшее количество туров может оказаться так, что единоличный победитель уже выявился досрочно? (В каждом туре участники разбиваются на пары. Выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0).

Прислать комментарий     Решение

Задача 64490

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами.
При каких n такое возможно?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .