ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 54]      



Задача 98295

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 6,7,8

Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число  K – H  считается выигрышем первого игрока (проигрышем второго).
  а) Существует ли у первого игрока беспроигрышная стратегия?
  б) Существует ли у него выигрышная стратегия?

Прислать комментарий     Решение

Задача 98431

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8,9

Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по очереди. Начинающий игру ставит в свободные клетки крестики, его партнер – нолики. Когда все клетки заполнены, подсчитывается количество строк и столбцов, в которых крестиков больше, чем ноликов, – число K, и количество строк и столбцов, в которых ноликов больше, чем крестиков – число Н (всего строк и столбцов – 18). Разность  В = К – Н  считается выигрышем игрока, который начинает. Найдите такое значение B, что
  1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл второй игрок;
  2) второй игрок всегда может добиться того, что первый получит выигрыш не больше B, как бы тот ни играл.

Прислать комментарий     Решение

Задача 98583

Темы:   [ Симметричная стратегия ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Выясните, кто из играющих может всегда выигрывать независимо от игры противника, и объясните, как он должен при этом играть.

Прислать комментарий     Решение

Задача 30450

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8

У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.

Прислать комментарий     Решение


Задача 107753

Темы:   [ Симметричная стратегия ]
[ Раскраски ]
Сложность: 4-
Классы: 7,8,9

Двое играют на доске 19×94 клеток. Каждый по очереди отмечает квадрат по линиям сетки (любого возможного размера) и закрашивает его. Выигрывает тот, кто закрасит последнюю клетку. Дважды закрашивать клетки нельзя. Кто выиграет при правильной игре и как надо играть?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .