ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 146]      



Задача 105101

Темы:   [ Теория игр (прочее) ]
[ Числовые таблицы и их свойства ]
[ Замощения костями домино и плитками ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Покажите, что в условиях задачи 105100 нет способа, гарантирующего Грише успех за 18 попыток.

Прислать комментарий     Решение

Задача 105149

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9

Боря задумал целое число, большее чем 100. Кира называет целое число, большее чем 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

Прислать комментарий     Решение

Задача 105153

Темы:   [ Теория игр (прочее) ]
[ Разные задачи на разрезания ]
[ Алгоритм Евклида ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 7,8,9

Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник?
Прислать комментарий     Решение


Задача 105179

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Назовём натуральное число разрешённым, если оно имеет не более 20 различных простых делителей. В начальный момент имеется куча из 2004! камней. Два игрока по очереди забирают из кучи некоторое разрешённое количество камней (возможно, каждый раз новое). Побеждает тот, кто заберёт последние камни. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 109550

Темы:   [ Теория игр (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4
Классы: 7,8,9

На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или - , второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 146]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .