Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 179]      



Задача 66321

Темы:   [ Системы точек ]
[ Четность и нечетность ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 10

На плоскости дано множество S, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой.
Докажите, что S можно разбить на два множества X и Y так, что выпуклые оболочки  conv X  и  conv Y  имеют поровну вершин.

Прислать комментарий     Решение

Задача 109790

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 5-
Классы: 9,10,11

Последовательность {an} строится следующим образом:  a1 = p  – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003.

Прислать комментарий     Решение

Задача 109797

Темы:   [ Числовые таблицы и их свойства ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Разбиения на пары и группы; биекции ]
[ Арифметическая прогрессия ]
Сложность: 5-
Классы: 8,9,10,11

В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

Прислать комментарий     Решение

Задача 109807

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число  n > 101000,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

Прислать комментарий     Решение

Задача 109825

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Процессы и операции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10,11

На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?
Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 179]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .