Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 30 31 32 33 34 35 36 [Всего задач: 179]      



Задача 115407

Темы:   [ Процессы и операции ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Полуинварианты ]
Сложность: 5+
Классы: 8,9,10

По кругу стоят 2009 целых неотрицательных чисел, не превышающих  100 . Разрешается прибавить по 1 к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более k  раз. При каком наименьшем k все числа гарантированно можно сделать равными?
Прислать комментарий     Решение


Задача 110178

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Полуинварианты ]
[ Процессы и операции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 6-
Классы: 9,10,11

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Прислать комментарий     Решение

Задача 115399

Темы:   [ Поворот на $90^\circ$ ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Метод координат на плоскости ]
[ Теория игр (прочее) ]
Сложность: 6-
Классы: 9,10,11

На плоскости отмечены все точки с целыми координатами  (x,y) такие, что x2+y2 1010 . Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?
Прислать комментарий     Решение


Задача 115410

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 6-
Классы: 9,10,11

Окружность с центром  I касается сторон  AB , BC , AC неравнобедренного треугольника  ABC в точках C1 , A1 , B1 соответственно. Окружности  ωB и  ωC вписаны в четырехугольники  BA1IC1 и  CA1IB1 соответственно. Докажите, что общая внутренняя касательная к  ωB и  ωC , отличная от  IA1 , проходит через точку  A .
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 [Всего задач: 179]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .