Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 181]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Натуральные числа $a$ и $b$ таковы, что $a^{n+1} + b^{n+1}$ делится на $a^n+b^n$ для бесконечного множества различных натуральных $n$. Обязательно ли тогда $a = b$?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны целые числа $a_{1}, ..., a_{1000}$. По кругу записаны их квадраты $a_{1}^2, ..., a_{1000}^2$. Сумма каждых 41 подряд идущих квадратов на круге делится на $41^2$.
Верно ли, что каждое из чисел $a_{1}, ..., a_{1000}$ делится на 41?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Назовём сложностью целого числа $n$ > 1 количество сомножителей в его разложении на простые. Для каких $n$ все числа между $n$ и 2$n$ имеют сложность
а) не больше, чем у $n$;
б) меньше, чем у $n$?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$.
Может ли многочлен $P(x, x)$ иметь нечётную степень?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Алёша задумал натуральные числа $a, b, c$, а потом решил найти такие натуральные $x, y, z$, что $a$ = НОК($x, y), b$ = НОК($x, z), c$ = НОК($y, z$). Оказалось, что такие $x, y, z$ существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа $a$ и $b$.
Докажите, что Боря может восстановить $c$.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 181]