ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 1 до 26. Даны пять точек некоторой окружности. С помощью
одной линейки постройте шестую точку этой окружности.
Возрастающая последовательность натуральных чисел a1<a2<… такова, что при каждом целом n>100 число an равно наименьшему натуральному числу, большему чем an−1 и не делящемуся ни на одно из чисел a1,a2,…,an−1. Докажите, что в такой последовательности лишь конечное количество составных чисел. |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 320]
В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 320]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке