ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно. Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2. Треугольник можно разрезать на три подобных друг другу треугольника. |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 320]
Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?
Двое играющих по очереди красят стороны n-угольника. Первый может покрасить сторону, которая граничит с нулём или двумя покрашенными сторонами, второй – сторону, которая граничит с одной покрашенной стороной. Проигрывает тот, кто не может сделать хода. При каких n второй может выиграть, как бы ни играл первый?
В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.
Треугольник можно разрезать на три подобных друг другу треугольника.
По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 320]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке