Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 323]
|
|
|
Сложность: 4- Классы: 7,8,9
|
На полоске 1×N на 25 левых клетках стоят 25 шашек. Шашка может ходить на соседнюю справа свободную клетку или перепрыгивать через соседнюю справа шашку на следующую за ней клетку (если эта клетка свободна), движение влево не разрешается. При каком наименьшем N все шашки можно поставить без пробелов в обратном порядке?
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.
|
|
|
Сложность: 4- Классы: 9,10,11
|
В зоопарке жили 200 попугаев. Однажды они по очереди сделали по одному заявлению. Начиная со второго, все заявления были "Среди сделанных ранее заявлений ложных – более 70%". Сколько всего ложных заявлений сделали попугаи?
|
|
|
Сложность: 4- Классы: 9,10,11
|
При каких N числа от 1 до N можно расставить в другом порядке так, чтобы среднее арифметическое любой группы из двух или более подряд стоящих чисел не было целым?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Дано простое число p. Назовём треугольник разрешённым, если все его углы имеют вид m/p·180°, где m целое. Одинаковыми будем считать разрешённые треугольники с одинаковым набором углов (то есть подобные). Вначале дан один разрешённый треугольник. Каждую минуту один из имеющихся треугольников разрезают на два разрешённых так, чтобы после разрезания все имеющиеся треугольники были разными. Спустя некоторое время оказалось, что ни один из треугольников так разрезать нельзя. Докажите, что к этому моменту среди имеющихся частей есть все возможные разрешённые треугольники.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 323]