Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 319]
|
|
Сложность: 4 Классы: 7,8,9
|
Даны 8 гирек весом 1,2,..,8 граммов, но неизвестно, какая из них сколько весит.
Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в
доказательство своей правоты готов провести одно взвешивание, в результате которого
будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он?
|
|
Сложность: 4 Классы: 8,9,10,11
|
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты,
и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
|
|
Сложность: 4 Классы: 9,10,11
|
55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?
Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.
Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
а) это можно сделать, если N + 1 – квадрат целого числа.
б) если это можно сделать, то N + 1 – квадрат целого числа.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 319]