ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 316]      



Задача 116046

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

Прислать комментарий     Решение

Задача 116259

Тема:   [ Средние величины ]
Сложность: 4
Классы: 8,9

Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
  а) это можно сделать, если  N + 1  – квадрат целого числа.
  б) если это можно сделать, то  N + 1  – квадрат целого числа.

Прислать комментарий     Решение

Задача 116613

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 6,7

Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников. Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит  а) 13;  б) 14 золотых слитков? Как ему это сделать?

Прислать комментарий     Решение

Задача 116662

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7

План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через N дверей". Какое наименьшее значение N должен назвать шах, чтобы приказ можно было выполнить?

Прислать комментарий     Решение

Задача 65560

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать.

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .