Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]
|
|
Сложность: 4 Классы: 6,7,8,9
|
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
|
|
Сложность: 4 Классы: 6,7,8,9
|
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
|
|
Сложность: 5- Классы: 9,10,11
|
В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
а) не более 460 камней;
б) не более 461 камня?
|
|
Сложность: 5- Классы: 9,10,11
|
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет.
|
|
Сложность: 5 Классы: 9,10,11
|
Решите уравнение
cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .
Страница:
<< 6 7 8 9 10 11
12 >> [Всего задач: 56]