Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 378]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Никита нарисовал и закрасил выпуклый пятиугольник с периметром $20$ и
площадью $21$. Таня закрасила все точки, находящиеся на расстоянии не более $1$ от закрашенных Никитой (см. рис.).
На сколько увеличилась закрашенная площадь? Ответ округлите до сотых.
|
|
Сложность: 3 Классы: 9,10,11
|
Волейбольный чемпионат с участием 16 команд проходил в один круг (каждая команда играла с каждой ровно один раз, ничьих в волейболе не бывает). Оказалось, что какие-то две команды одержали одинаковое число побед. Докажите, что найдутся три команды, которые выиграли друг у друга по кругу (то есть $A$ выиграла у $B$, $B$ выиграла у $C$, а $C$ выиграла у $A$).
|
|
Сложность: 3 Классы: 8,9,10
|
В четырёхугольнике длины всех сторон и диагоналей меньше 1 м.
Доказать, что его можно поместить в круг радиуса 0,9 м.
Доказать, что уравнение m!·n! = k! имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.
Бильярд имеет форму прямоугольного треугольника, один из острых углов
которого равен 30°. Из этого угла по медиане противоположной стороны
выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 378]