Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 378]
|
|
Сложность: 3 Классы: 7,8,9
|
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.
|
|
Сложность: 3 Классы: 8,9,10
|
В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит
учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?
a, b и c – целые числа. Докажите, что если a = b + c, то a4 + b4 + c4 есть удвоенный квадрат целого числа.
Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 378]