ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 378]      



Задача 115969

Темы:   [ Повороты на $60^\circ$ и $120^\circ$ ]
[ Перегруппировка площадей ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.

Прислать комментарий     Решение

Задача 115998

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Докажите, что ни при каких натуральных значениях x и y число  x8x7y + x6y² – ... – xy7 + y8  не является простым.

Прислать комментарий     Решение

Задача 115999

Темы:   [ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Луч с началом в точке A, параллельный OB, пересекает окружность в точке C. Отрезок OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что OK = KB.

Прислать комментарий     Решение

Задача 116001

Темы:   [ Арифметическая прогрессия ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

Прислать комментарий     Решение

Задача 116002

Темы:   [ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Луч с началом в точке A, параллельный OB, пересекает окружность в точке C. Отрезок OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что  OK = KB.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .