Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 378]
|
|
Сложность: 3 Классы: 7,8,9
|
По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)
|
|
Сложность: 3 Классы: 6,7,8
|
На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того
же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и
чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну
точку внутри него). Как это сделать?
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали выпуклого четырёхугольника делят его на четыре треугольника.
Оказалось, что сумма площадей двух противоположных (имеющих только общую вершину) треугольников равна сумме площадей двух других треугольников. Докажите, что одна из диагоналей делится другой диагональю пополам.
|
|
Сложность: 3 Классы: 6,7,8
|
На базаре продаются рыбки, большие и маленькие. Сегодня три больших и одна маленькая стоят вместе столько же, сколько пять больших вчера. А две большие и одна маленькая сегодня стоят вместе столько же, сколько три больших и одна маленькая вчера. Можно ли по этим данным выяснить, что дороже: одна большая и две маленьких сегодня, или пять маленьких вчера?
В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 378]