ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 378]      



Задача 116156

Темы:   [ Построения одной линейкой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Из листа бумаги в клетку вырезали квадрат 2×2.
Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

Прислать комментарий     Решение

Задача 116167

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что  EF = FL.

Прислать комментарий     Решение

Задача 116232

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 10,11

Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции y = sin x. Может ли та же кривая являться графиком функции y = sin 2x в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)?

Прислать комментарий     Решение

Задача 116433

Темы:   [ Функции. Непрерывность (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что  f(1) + f(2) = 10  и    при любых а и b. Найдите f(22011).

Прислать комментарий     Решение

Задача 116435

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

На шахматной доске расставили n белых и n чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение n.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .