Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 378]
|
|
Сложность: 3 Классы: 7,8,9
|
Для чисел а, b и с, отличных от нуля, выполняется равенство: a²(b + c – a) = b²(c + a – b) = c²(a + b – c). Следует ли из этого, что а = b = c?
На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?
|
|
Сложность: 3 Классы: 10,11
|
Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?
|
|
Сложность: 3 Классы: 8,9,10
|
Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D.
Докажите, что ∠APB = ∠CQD.
|
|
Сложность: 3 Классы: 8,9,10
|
В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 378]