Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 204]
|
|
Сложность: 4 Классы: 10,11
|
На сфере радиуса 1 дан треугольник, стороны которого – дуги трёх различных окружностей радиуса 1 с центром в центре сферы, имеющие длины меньше $\pi$, а площадь равна четверти площади сферы. Докажите, что четырьмя копиями такого треугольника можно покрыть всю сферу.
|
|
Сложность: 4 Классы: 7,8,9,10
|
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
|
|
Сложность: 4 Классы: 10,11
|
Пусть $ABCD$ — параллелограмм, отличный от прямоугольника, а точка $P$ выбрана внутри него так, что описанные окружности треугольников $PAB$ и $PCD$ имеют общую хорду, перпендикулярную $AD$. Докажите, что радиусы данных окружностей равны.
|
|
Сложность: 4 Классы: 8,9,10
|
В кабинете сидят N нерях, у каждого на его столе скопилось ненулевое количество мусора. Неряхи выходят обедать по одному (после возвращения предыдущего), а в это время каждый из остальных перекладывает половину мусора со своего стола на стол вышедшего. Может ли случиться, что после того, как все пообедали, количество мусора на столах ни у кого не изменится, если а) N = 2; б) N = 10?
|
|
Сложность: 4 Классы: 9,10,11
|
Высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Пусть $P$ – произвольная точка внутри (и не на сторонах) треугольника $ABC$, лежащая на описанной окружности треугольника $ABH$, и $A'$, $B'$, $C'$ – проекции точки $P$ на прямые $BC$, $CA$, $AB$. Докажите, что описанная окружность треугольника $A'B'C'$ проходит через середину отрезка $CP$.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 204]