ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Гальперин Г.А.

Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



Задача 97815

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от 1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их сумма равна 987654321.
  а) Доказать, что найдутся хотя бы две кондиционные пары   ((a, b)  и  (b, a)  – одна и та же пара).
  б) Доказать, что кондиционных пар – нечётное число.

Прислать комментарий     Решение

Задача 98034

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 10,11

Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?

Прислать комментарий     Решение

Задача 98065

Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9,10

Дано:

Докажите, что  

Прислать комментарий     Решение

Задача 98385

Темы:   [ Десятичная система счисления ]
[ Куб ]
[ Делимость чисел. Общие свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)

Прислать комментарий     Решение

Задача 98514

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Десятичная запись натурального числа a состоит из n цифр, а десятичная запись числа a³ состоит из m цифр. Может ли  m + n  равняться 2001?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .