Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 39]
|
|
Сложность: 3+ Классы: 7,8,9
|
Рассматривается конечное множество M единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались).
Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества M) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества M.
|
|
Сложность: 3+ Классы: 7,8,9
|
Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают.
а) Найдите четыре таких числа.
б) Докажите, что таких чисел бесконечно много.
|
|
Сложность: 3+ Классы: 10,11
|
Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.
|
|
Сложность: 3+ Классы: 7,8,9
|
В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а
каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных
вылазках.
Рассматривается последовательность квадратов на плоскости. Первые два
квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую
вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит
верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со
стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона
пятого квадрата со стороной 5 содержит нижние стороны первого, второго и
четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 39]