Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]
|
|
Сложность: 4 Классы: 7,8,9
|
Город представляет собой бесконечную клетчатую плоскость (линии – улицы,
клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть
бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели?
(Максимальные скорости милиции и бандита какие-то конечные, но не известные нам
величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.)
Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?
|
|
Сложность: 4 Классы: 7,8,9
|
Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?
|
|
Сложность: 4 Классы: 8,9,10
|
Числовая последовательность определяется условиями:
Докажите, что среди членов этой последовательности бесконечно много полных
квадратов.
|
|
Сложность: 4 Классы: 10,11
|
Числовая последовательность определяется условиями:
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?
Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]