Страница:
<< 1 2 [Всего задач: 10]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Петя сложил 100 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?
|
|
Сложность: 3+ Классы: 5,6,7
|
Равносторонний треугольник со стороной 8 разделили на равносторонние треугольнички со стороной 1 (см. рис.). Какое наименьшее количество треугольничков
надо закрасить, чтобы все точки пересечения линий (в том числе и те, что по краям) были вершинами хотя бы одного закрашенного треугольничка?
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?
Можно ли составить решётку, изображённую на рисунке
а) из пяти ломаных длины 8?
б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)
|
|
Сложность: 4 Классы: 10,11
|
N³ единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких N такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины N?
Страница:
<< 1 2 [Всего задач: 10]