ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков А.Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



Задача 65198

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10

В турнире по футболу участвует 2n команд  (n > 1).  В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели  2n – 1  тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.

Прислать комментарий     Решение

Задача 65361

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол равен половине центрального ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9,10,11

Окружность, проходящая через вершины A, B и точку пересечения высот треугольника ABC, пересекает стороны AC и BC во внутренних точках.
Докажите, что  60° < ∠C < 90°.

Прислать комментарий     Решение

Задача 66137

Темы:   [ Средняя линия трапеции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что  BC || AD  и  AN = CM.
Верно ли, что ABCD – параллелограмм?

Прислать комментарий     Решение

Задача 115867

Темы:   [ Вписанные и описанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Средняя линия трапеции ]
[ Признаки подобия ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10,11

Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.

Прислать комментарий     Решение

Задача 116981

Темы:   [ Турниры и турнирные таблицы ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 5,6,7

Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .