Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 49]
|
|
Сложность: 4- Классы: 9,10
|
В турнире по футболу участвует 2n команд (n > 1). В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели 2n – 1 тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Окружность, проходящая через вершины A, B и точку пересечения высот треугольника ABC, пересекает стороны AC и BC во внутренних точках.
Докажите, что 60° < ∠C < 90°.
|
|
Сложность: 4- Классы: 8,9,10
|
Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что BC || AD и AN = CM.
Верно ли, что ABCD – параллелограмм?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.
|
|
Сложность: 4- Классы: 5,6,7
|
Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире?
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 49]