ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Казицина Т.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 66277

Тема:   [ Разные задачи на разрезания ]
Сложность: 3+
Классы: 6,7,8

Разрежьте фигуру ниже на четыре части одинакового периметра так, чтобы среди этих частей не было равных.

Прислать комментарий     Решение

Задача 66280

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника?

Прислать комментарий     Решение

Задача 116369

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9,10,11

Бабе-Яге подарили большие песочные часы на 5 минут и маленькие – на 2 минуты. Зелье должно непрерывно кипеть ровно 8 минут. Когда оно закипело, весь песок в больших часах находился в нижней половине, а в маленьких – какая-то (неизвестная) часть песка в верхней, а остальная часть – в нижней половине. Помогите Бабе-Яге отмерить ровно 8 минут.
(Песок все время сыплется с постоянной скоростью. На переворачивание время не тратится.)

Прислать комментарий     Решение

Задача 64799

Темы:   [ Необычные построения (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10

Таня вырезала из клетчатой бумаги треугольник, изображённый на рисунке. Через некоторое время линии сетки выцвели. Сможет ли Таня их восстановить, не пользуясь никакими инструментами, а только перегибая треугольник? (Длины сторон треугольника Таня помнит.)

Прислать комментарий     Решение

Задача 105147

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9

В треугольнике ABC на сторонах AC и BC взяты такие точки X и Y, что  ∠ABX = ∠YAC,  ∠AYB = ∠BXCXC = YB.  Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .