ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2. Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.) Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами. Ширина реки один километр. Это по определению означает, что от любой точки
каждого берега можно доплыть до противоположного берега, проплыв не больше
километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до
любого из берегов было бы не больше: По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел a – d и b – c отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз. |
Страница: 1 2 >> [Всего задач: 7]
Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из n – 1 цветов так, чтобы от каждого блока отходил n – 1 провод разного цвета, если а) n = 6; б) n = 13?
Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
Значение a подобрано так, что число корней первого из уравнений
4x – 4–x = 2 cos ax, 4x + 4–x = 2 cos ax + 4 равно 2007.
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел a – d и b – c отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.
В таблице размера n×n клеток: две противоположные угловые клетки – чёрные, а остальные – белые. Какое наименьшее количество белых клеток достаточно перекрасить в чёрный цвет, чтобы после этого с помощью преобразований, состоящих в перекрашивании всех клеток какого-либо столбца или какой-либо строки в противоположный цвет, можно было сделать чёрными все клетки таблицы?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке