ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Канель-Белов А.Я.

Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]      



Задача 107794

Тема:   [ Периодичность и непериодичность ]
Сложность: 5-
Классы: 8,9,10,11

Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

Прислать комментарий     Решение

Задача 108104

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5-
Классы: 8,9

Пусть la , lb и lc – длины биссектрис углов A , B и C треугольника ABC , а ma , mb и mc – длины соответствующих медиан. Докажите, что

+ + >1

Прислать комментарий     Решение

Задача 98374

Темы:   [ Замощения костями домино и плитками ]
[ Правильные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Малые шевеления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 10,11

а) На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму правильного шестиугольника, причём у всех салфеток одна сторона параллельна одной и той же прямой. Всегда ли можно вбить в стол несколько гвоздей так, что все салфетки будут прибиты, причём каждая – только одним гвоздём?
б) Тот же вопрос про правильные пятиугольники.

Прислать комментарий     Решение

Задача 98421

Темы:   [ Замена переменных ]
[ Квадратный трехчлен (прочее) ]
[ Возрастание и убывание. Исследование функций ]
[ Разрывы функций ]
Сложность: 5-
Классы: 9,10

Дана функция    ,   где трёхчлены  x² + ax + b  и  x² + cx + d  не имеют общих корней. Докажите, что следующие два утверждения равносильны:
  1) найдётся числовой интервал, свободный от значений функции;
  2)  f(x) представима в виде:  f(x) = f1(f2(...fn–1(fn(x))...)),  где каждая из функций  fi(x) есть функция одного из видов:   kix + bi, x–1, x².

Прислать комментарий     Решение

Задача 105071

Темы:   [ Десятичная система счисления ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (углы и длины) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Логарифмические неравенства ]
Сложность: 5-
Классы: 10,11

Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .